
RED HAT JBOSS BPM SUITE

PERFORMANCE BENCHMARK
WHITE PAPER — TECHNICAL SUPPLEMENT

The Red Hat JBoss BPM Suite is the JBoss platform for Business Process
Management (BPM). It enables enterprise business and IT users to document,
simulate, manage, automate and monitor business processes and policies.

This document details a performance benchmark of the
Red Hat JBoss BPM Suite (BPMS) version 6.3.

The benchmark tests utilize the KIE Performance Kit and Apache JMeter to
execute load tests and gather metrics used to analyze the performance.

Information on the KIE Performace Kit can be found on github at:
https://github.com/droolsjbpm/droolsjbpm-integration/wiki/
KIE-Performance-Kit

Information of JMeter can be found at: http://jmeter.apache.org/

https://github.com/droolsjbpm/droolsjbpm-integration/wiki/KIE-Performance-Kit
https://github.com/droolsjbpm/droolsjbpm-integration/wiki/KIE-Performance-Kit
http://jmeter.apache.org/

PA G E 2

BENCHMARK METRICS
The key metric types utilized for the BPMS benchmark tests are meters and
timers.
■■ Meters - A meter measures the rate of events over time.

■■ Timers - A timer measures both the rate that a particular piece of code is called and
the distribution of its duration.

For the benchmark analysis, we executed several test scenarios over 500-1000 iterations
in escalating numbers of threads to capture performance in several BPMS configurations.

The key meters and timers analyzed are as follows.

COMPLETED PROCESSES PER SECOND
Completed Processes per Second values are determined by a meter that is measuring the
throughput. This is the number of process instances that are being completed per second
as shown in the “Mean Rate” figures. Note that the figures depict “Events/Second”.

AVERAGE TIME TO COMPLETE
Average Time to Complete values are determined by timers that measure the time it
takes to perform an individual event. These values are aggregated and displayed in the
“Mean Time” figures. Key timer events utilized for the benchmark include:

■■ Time it takes to start and complete a process instance.

■■ Time it takes to start a process instance and halt at a signal node.

■■ Time it takes to signal a process instance to the completion of the process instance.

■■ Time it takes to start a process instance to halt a human task node.

■■ Time it takes to query for a human task.

■■ Time it takes to claim a human task.

■■ Time it takes to complete a human task to the completion of the process instance.

CONTENTS

Benchmark Metrics 2
Completed Processes per Second 2
Average Time to Complete 2
Notes on the Figures 3

Benchmark Process Scenarios 3
Start-End 3

Sequential Flow 3
Parallel Flow 3
Rule Task 4
Human Task 4

Benchmark Test Scenarios 4

Benchmark Test Results 5
Embedded Runtime Benchmark Results 5

Medium Server Configuration Test Results 5
 Benchmark Results - Medium Server

Configuration - No Persistence 6
 Benchmark Results - Medium Server

Configuration - Persistence No Auditing 7
 Benchmark Results - Medium Server

Configuration - Persistence with Auditing 9

Large Server Configuration 10
 Benchmark Results - Large Server

Configuration - No Persistence 11
 Benchmark Results - Large Server

Configuration - Persistence No Auditing 12
 Benchmark Results - Large Server

Configuration - Persistence with Auditing 13

 Embedded Runtime Performance
Results Analysis 15

Business Central Remote REST API 16
Medium Server Singleton Runtime
Manager Test Results 16
Average Time to Complete a Process
Instance 17

Medium Server Test Results 18
Large Server Test Results 20
Clustered Business Central Server Test Results 22

Business Central Test Summary 24

About Vizuri 26
About the Authors 26

NOTES ON THE FIGURES
■■ Figures that include “External Signal” depict an aggregation of both the time

spent starting and ending the signal process using the values from individual
timers. The arbitrary wait time is omitted.

■■ Figures depicting Human Tasks are broken down into the individual events that make
up the processing of a Human Task. Similar to the Event Signal, any wait time is not
part of the readings.

BENCHMARK PROCESS SCENARIOS
The following BPMS Process Definition scenarios were utilized in the performance
bench-mark tests. These processes represent common BPMS patterns. They are meant
to test the performance of the BPMS platform. Performance in a real world situation can
vary based on the processing steps implemented.

START-END
The simplest possible process, the Start-End task functions as both a sanity check and
baseline by only providing the bare minimum.

SEQUENTIAL FLOW
The Sequential Flow Process executes a series of script tasks in succession.

PARALLEL FLOW
The Parallel Gateway executes two series of script tasks in parallel. This examines
the effect of splitting the token.

PA G E 3

RULE TASK
The Rule Task Process executes a business rule task and performs a decision task
based on the results. This highlights the context switch from process to rules.

EXTERNAL SIGNAL
The Signal Process waits for a signal from an external source. This produces a “save
point” while it waits for an external signal to restart the process. Each save point causes
the pro-cess instance context to be serialized and persisted in the database.

HUMAN TASK
The Human Task Process assigns a task to a user. It waits for that user to complete the
human task and then performs a decision task based on the input from the user. Like
the simple signal, a human task is a “save point”, but has more steps as the task is
created, claimed and completed.

BENCHMARK TEST SCENARIOS
The BPM Suite supports many combinations of deployment and runtime strategies. The
following configurations were utilized for the Benchmark tests to represent the most
common deployment strategies.

PA G E 4

■■ Embedded Java API - The Java API executes the BPMS runtime engine “In Process”
or embedded in the same Java Virtual Machine (JVM). The Embedded runtime
supports the following persistent strategies.

• No Persistence - Embedded Java API configured with No Persistence or Auditing

• Persistence with No Auditing - Embedded Java API configured to perform
persistence but no auditing.

• Persistence with Auditing - Embedded Java API configured to perform persistence
and auditing.

■■ Business Central Remote REST API - Execute the BPMS runtime in a BPMS Business
Central Web Console utilizing the Remote REST API.

• Persistence with Auditing - The default configuration for the Business Central is
Persistence with Auditing. So this is the only configuration tested for the Remote
API.

In addition to the deployment strategies, the BPMS execution environment supports
three runtime managers.

■■ Single - One singleton session is used to execute all requests.

■■ PerProcessInstance - Each process instance has its own session context; all commands
for that process instance are automatically executed in that context.

■■ PerRequest - A new session is used for each request (and destroyed afterwards).

The PerProcessInstance is usually the best runtime manager to utilize when performance
and functionality are a concern.

BENCHMARK TEST RESULTS
The BPMS Benchmark Tests were run in the Amazon Web Service (AWS) environment.
Environments were created to simulate a medium and large scale execution environment.

EMBEDDED RUNTIME BENCHMARK RESULTS
The Embedded Runtime tests utilize the KIE Performance Kit to bootstrap a Java Runtime
to execute the test scenarios. Each test scenarios is run with 1, 10, 25 and 50 concurrent
threads to gather metrics. Each scenario is executed 1000 times by each thread to ensure
accurate metrics are gathered.

A thread is not equal to the number of concurrent users. Threads are shared resources
that are utilized by all users. Each thread can support many users. As the number of
concurrent threads is increased, the time it takes to perform a single task also increases. It
should be noted this increase is due to the number of tasks being performed simultane-
ously. Even though it takes longer to complete a single task, more tasks are performed
in aggregate.

MEDIUM SERVER CONFIGURATION TEST RESULTS
The medium server configuration test analyzes the performance of BPMS in a medium
sized server configuration.

PA G E 5

The specification for the medium sized environment is as follows.

BENCHMARK RESULTS - MEDIUM SERVER CONFIGURATION - NO PERSISTENCE
The following are the benchmark test results of the embedded Java API on a medium
server configuration with no persistence.

FIGURE 1. PROCESS INSTANCES COMPLETED PER SECOND

DATABASE SERVER CONFIGURATION

Server Type db.m4.2xlarge

Database PostgreSQL 9.4.7

CPU 8 vCPU

Memory 32 GB

Storage 20 GB

RUNTIME SERVER CONFIGURATION

Server Type m4.large

Operating System Red Hat Enterprise Linux 7.2

CPU 2 vCPU

Memory 8 GB

JAVA VIRTUAL MACHINE (JVM) CONFIGURATION

Version OpenJDK 1.8.0_91

Heap 6 GB Min/Max

Database Connection Pool 80 Connections

BPMS Runtime Manager PerProcessInstance

PA G E 6

FIGURE 2. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

We can see a steady increase in the time it takes to execute a process instance as the number
of threads is increased. The throughput benefit of additional threads is maxed out at around
50 threads. This is due to the increase in the time it takes for each process to complete.

BENCHMARK RESULTS - MEDIUM SERVER CONFIGURATION -
PERSISTENCE NO AUDITING
The following are the benchmark test results of the embedded Java API on a medium server
configuration with persistence but no auditing.

FIGURE 3. PROCESS INSTANCES COMPLETED PER SECOND

PA G E 7

The the number of process instances completed per second across all threads in the
persistence with no auditing test is 114. This is a 72% decrease over the 418 completed
per second in the no persistence test scenario.

FIGURE 4. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

The average time to complete a process instance over all threads for the persistence
with no auditing is 136.22 milliseconds. This is a 247% increase over the 39.27
milliseconds of the no persistence test scenario.

With the addition of persistence, we can add the Human Task and External Signal test sce-
nario, to the performance benchmark. The Human Task and External Signal service of
BPMS utilizes persistence to save the state of human tasks and signals as they wait for
completion.

The Human Task scenario tracks the mean time it takes to perform three actions.
■■ Task Start - The time it takes to start the process instance and start a human task.

■■ Task Query - The time it takes to query and return the task associated with the
created process instance

■■ Task Complete - The time it takes to complete the task and trigger the completion
of the process instance.

Similarly, the External Signal tracks the mean time to perform two actions:

■■ Process Start - The time it takes to get to a wait state.

■■ Process completion - The time it takes to complete once external signal is received.

These “complex tasks” show the aggregated values, excluding wait times not related to
processing.

PA G E 8

FIGURE 5. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

BENCHMARK RESULTS - MEDIUM SERVER CONFIGURATION -
PERSISTENCE WITH AUDITING
The following are our findings running the embedded Java API on a medium
server configuration with persistence and auditing.

FIGURE 6. PROCESS INSTANCES COMPLETED PER MILLISECOND

PA G E 9

The the number of process instances completed per second in the persistence with
audit-ing test is 85. This is a 38% decrease over the 136 completed per second in the
no auditing test scenario.

FIGURE 7. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

The average time to complete a process instance over all thread for the persistence
with auditing is 181.73 milliseconds. This is a 58% increase over the 114.88
milliseconds of the no auditing test scenario.

FIGURE 8. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

PA G E 10

R E D H AT J B O S S B P M S U I T E P E R F O R M A N C E B E N C H M A R K — T E C H N I C A L S U P P L E M E N T V I Z U R I , N O V E M B E R 2 0 1 6

The average time to perform a “complex” event in the persistence with auditing test is
216.3 milliseconds. This is a 16% increase over the 186.03 it takes without auditing.

LARGE SERVER CONFIGURATION
The large server configuration test scenario analyzes the performance of BPMS in a
large sized server configuration.

The specification for the large sized environment is as follows.

BENCHMARK RESULTS - LARGE SERVER CONFIGURATION - NO PERSISTENCE
The following are the benchmark test results of the embedded Java API on a large
server configuration with no persistence.

FIGURE 9. PROCESS INSTANCES COMPLETED PER SECOND

DATABASE SERVER CONFIGURATION

Server Type db.m4.2xlarge

Database PostgreSQL 9.4.7

CPU 8 vCPU

Memory 32 GB

Storage 20 GB

RUNTIME SERVER CONFIGURATION

Server Type c4.xlarge

Operating System Red Hat Enterprise Linux 7.2

CPU 4 vCPU

Memory 7.5 GB

JBPM RUNTIME AND JAVA VIRTUAL MACHINE (JVM) CONFIGURATION

Version OpenJDK 1.8.0_91

Heap 6 GB Min/Max

Database Connection Pool 80 Connections

BPMS Runtime Manager PerProcessInstance

PA G E 11

FIGURE 10. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

We can see a steady increase in the time it takes to execute a process instance as the
number of threads is increased. The throughput benefit of additional threads is maxed
out at around 50 threads. This is due to the increase in the time it takes for each process
to complete.

BENCHMARK RESULTS - LARGE SERVER CONFIGURATION -
PERSISTENCE NO AUDITING
The following are the benchmark test results of the embedded Java API on a large
server configuration with persistence but no auditing.

FIGURE 11. PROCESS INSTANCES COMPLETED PER SECOND

PA G E 12

The the number of process instances completed per second in the persistence with
no auditing test is 165. This is a 82% decrease over the 892 completed per second in
the no persistence test scenario.

FIGURE 12. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

The average time to complete a process instance over all thread for the persistence with
no auditing is 97.8 milliseconds. This is a 440% increase over the 18.15 milliseconds of
the no persistence test scenario.

The figure below show the results of the human task service test scenario.

FIGURE 13. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

PA G E 13

BENCHMARK RESULTS - LARGE SERVER CONFIGURATION -
PERSISTENCE WITH AUDITING
The following are our findings running the embedded Java API on a large
server configuration with persistence and auditing.

FIGURE 14. PROCESS INSTANCES COMPLETED PER
MILLISECOND

The the number of process instances completed per second in the persistence with
auditing test is 108. This is a 35% decrease over the 165 completed per second in the
no auditing test scenario.

PA G E 14

FIGURE 15. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

The average time to complete a process instance over all thread for the persistence
with auditing is 170 milliseconds. This is a 74% increase over the 97.8 milliseconds of
the no auditing test scenario.

FIGURE 16. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

The average time to perform a human task event in the persistence with auditing test
is 228.16 milliseconds. This is a 26% increase over the 180.25 it takes without
auditing.

PA G E 15

EMBEDDED RENTIME PERFORMANCE RESULTS ANALYSIS
As expected, the embedded runtime performance test shows that no persistence is the
fastest configuration followed by persistence with no auditing and the persistence with
auditing. This is attributed to the fact that the biggest bottleneck in the BPMS process
is the performance of the backend database.

The following figures illustrate the performance difference between the medium and
large server configurations as well as the different persistence strategies. These figures
show the aggregate of all “simple” scenarios run over all thread counts for a particular
configuration.

FIGURE 17. PROCESSES COMPLETED PER SECOND COMPARISON

FIGURE 18. AVERAGE TIME TO COMPLETE PROCESS COMPARISON

PA G E 16

BUSINESS CENTRAL REMOTE REST API
The Business Central exposes REST and JMS Remote APIs for running business processes.
The default configuration of the BPMS Business Central is to enable persistence with
auditing so that is the only scenario tested. The REST API is the only remote API tested.

The Apache JMeter load testing framework was utilized to execute the BPMS REST API
over 1, 10, 25 and 50 threads to capture metrics to be analyzed. Each thread executes the
test scenarios 500 times.

The test scenarios were executed from machines in the same AWS zone to reduce network
latency. It should be noted that these test results reflect the time it takes to perform the full
round trip REST calls to the BPMS server.

Note that for our considerations, a “medium”configuration is running on an AWS Large
instance, whereas a “large” configuration is on an AWS XLarge instance.

MEDIUM SERVER SINGLETON RUNTIME MANAGER TEST RESULTS
The medium server test scenario analyzes the performance of the BPMS business cen-tral in
a medium sized server configuration. This first test utilizes the singleton runtime manager,
which is the default runtime manager in the Business Central. The singleton runtime
manager is not meant to be used to support many concurrent users because all request are
processed one at a time through the singleton runtime manager. These tests are meant to
show when you should start to consider moving to another runtime manager based on the
concurrent load expected in your configuration.

The following server configurations were utilized.

DATABASE SERVER CONFIGURATION

Server Type db.m4.2xlarge

Database PostgreSQL 9.4.7

CPU 8 vCPU

Memory 32 GB

Storage 20 GB

TEST SERVER CONFIGURATION

Server Type c4.xlarge

Operating System Red Hat Enterprise Linux 7.2

CPU 4 vCPU

Memory 7.5 GB

BUSINESS CENTRAL SERVER CONFIGURATION

Server Type m4.large

Operating System Red Hat Enterprise Linux 7.2

CPU 2 vCPU

Memory 8 GB

BUSINESS CENTRAL JAVA VIRTUAL MACHINE (JVM) CONFIGURATION

Version OpenJDK 1.8.0_91

Heap 6 GB Min/Max

Database Connection Pool 20 Min 80 Max Connections

BPMS Runtime Manager Singleton

PA G E 17

AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

FIGURE 19. PROCESS INSTANCES COMPLETED PER

SECOND

FIGURE 20. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

PA G E 18

FIGURE 21. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

As the number of concurrent requests increases in the singleton test case, the
response time steadily degradates. This is due to the fact that each request is being
processed sequentially by one runtime manager.

PA G E 19

MEDIUM SERVER TEST RESULTS
The medium server test scenario analyzes the performance of the BPMS Business
Central in a medium sized server configuration.

The following server configurations were utilized.

DATABASE SERVER CONFIGURATION

Server Type db.m4.2xlarge

Database PostgreSQL 9.4.7

CPU 8 vCPU

Memory 32 GB

Storage 20 GB

TEST SERVER CONFIGURATION

Server Type c4.xlarge

Operating System Red Hat Enterprise Linux 7.2

CPU 4 vCPU

Memory 7.5 GB

BUSINESS CENTRAL SERVER CONFIGURATION

Server Type m4.large

Operating System Red Hat Enterprise Linux 7.2

CPU 2 vCPU

Memory 8 GB

BUSINESS CENTRAL JAVA VIRTUAL MACHINE (JVM) CONFIGURATION

Version OpenJDK 1.8.0_91

Heap 6 GB Min/Max

Database Connection Pool 20 Min 80 Max Connections

BPMS Runtime Manager PerProcessInstance

PA G E 20

FIGURE 22. PROCESS INSTANCES COMPLETED PER SECOND

FIGURE 23. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

PA G E 21

A comparison of the singleton vs per process instance runtime managers shows that
the average time to complete a process instance across all threads for the singleton
runtime manager is 506 milliseconds while the per process instance runtime manager’s
average time to complete is 213 milliseconds. As the number of concurrent threads is
increased this gap gets bigger.

The following diagram illustrates this.

FIGURE 24. SINGLETON VS PERPROCESSINSTANCE COMPARISON

The next graphs show the average times to complete external signal and human
task actions using the business central REST API.

PA G E 22

FIGURE 25. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

LARGE SERVER TEST RESULTS
The large server test scenario analyzes the performance of the BPMS Business Central
in a large sized server configuration.

The following server configurations were utilized.

PA G E 23

FIGURE 26. PROCESS INSTANCES COMPLETED PER SECOND

DATABASE SERVER CONFIGURATION

Server Type db.m4.2xlarge

Database PostgreSQL 9.4.7

CPU 8 vCPU

Memory 32 GB

Storage 20 GB

TEST SERVER CONFIGURATION

Server Type c4.xlarge

Operating System Red Hat Enterprise Linux 7.2

CPU 4 vCPU

Memory 7.5 GB

BUSINESS CENTRAL SERVER CONFIGURATION

Server Type c4.xlarge

Operating System Red Hat Enterprise Linux 7.2

CPU 4 vCPU

Memory 7.5 GB

BUSINESS CENTRAL JAVA VIRTUAL MACHINE (JVM) CONFIGURATION

Version OpenJDK 1.8.0_91

Heap 6 GB Min/Max

Database Connection Pool 20 Min 80 Max Connections

BPMS Runtime Manager PerProcessInstance

PA G E 24

FIGURE 27. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

FIGURE 28. AVERAGE TIME TO COMPLETE “COMPLEX” OPERATION

CLUSTERED BUSINESS CENTRAL SERVER TEST RESULTS
The clustered test scenario analyzes the performance of the BPMS Business Central
in a clustered configuration. The clustered configuration consists of two medium sized
Business Central Servers fronted by a HAProxy load balancer.

PA G E 25

FIGURE 29. PROCESS INSTANCES COMPLETED PER SECOND

DATABASE SERVER CONFIGURATION

Server Type db.m4.2xlarge

Database PostgreSQL 9.4.7

CPU 8 vCPU

Memory 32 GB

Storage 20 GB

TEST SERVER CONFIGURATION

Server Type c4.xlarge

Operating System Red Hat Enterprise Linux 7.2

CPU 4 vCPU

Memory 7.5 GB

LOAD BALANCER CONFIGURATION

Server Type m4.large

Operating System Red Hat Enterprise Linux 7.2

CPU 2 vCPU

Memory 8 GB

Server Type HAProxy

BUSINESS CENTRAL SERVER CONFIGURATION (2)

Server Type m4.large

Operating System Red Hat Enterprise Linux 7.2

CPU 2 vCPU

Memory 8 GB

BUSINESS CENTRAL JAVA VIRTUAL MACHINE (JVM) CONFIGURATION

Version OpenJDK 1.8.0_91

Heap 6 GB Min/Max

Database Connection Pool 20 Min 80 Max Connections

BPMS Runtime Manager PerProcessInstance

PA G E 26

FIGURE 30. AVERAGE TIME TO COMPLETE A PROCESS INSTANCE

FIGURE 31. AVERAGE TIME TO COMPLETE A “COMPLEX” OPERATION

PA G E 27

BUSINESS CENTRAL TEST SUMMARY
When comparing the Business Central test results, it interesting to note that the results
show that the number of CPU’s available for processing is the biggest factor in
throughput when all else is equal as the one (1) 4-core machine vs. a cluster of two (2) 2-
core machines achieves essentially the same throughput.

FIGURE 32. BUSINESS CENTRAL TEST COMPARISON

And finally, the average time to complete a process instance on a medium workbench
server configuration is 270 milliseconds. The average time for the large and clustered
configurations are relatively the same at 210-220 milliseconds. The following figure
shows how these grand averages compare with the Embedded large and medium
instances, all running with persistence with auditing enabled.

FIGURE 33. EMBEDDED VS. WORKBENCH COMPARISON

PA G E 28

ABOUT VIZURI
Vizuri is an open source consulting group founded in 2002 that has had a long standing
affiliation with JBoss that predates its acquisition by Red Hat. Vizuri has been a premier
partner of Red Hat since 2005, and continues to deliver innovative solutions that often
uti-lize their supported software offerings.

Vizuri provides expert consulting in 3 areas (Business Rules, Enterprise Integration and
Cloud Enablement), and offers services that range from health check assessments
through turn-key development projects and platform configurations.

ABOUT THE AUTHORS
Kent Eudy is Vizuri’s Technical Director responsible for overseeing our Service Oriented
Architecture (SOA), Enterprise Integration and Java Enterprise Edition (JEE) practice
areas. He has over 27 years of experience including 16 as a consultant. He has led
development efforts on these technologies for clients in various industry sectors such as
retail, medical, government, and insurance.

Ken Spokas is Vizuri’s Technical Director responsible for overseeing our Business Rules
and Processes practice area. He has over 17 years of experience leading successful proj-
ects of various sizes and scopes. He particularly enjoys leveraging open-source frame-
works to solve complex problems.

They both have deep experience delivering solutions utilizing the Red Hat JBoss BPM
Suite and its underlying framework jBPM, both the current version and several of it’s
earlier incarnations.

PA G E 29

http://vizuri.com

	Benchmark Metrics
	Completed Processes per Second
	AVERAGE TIME TO COMPLETE
	NOTES ON THE FIGURES

	Benchmark Process Scenarios
	Start-End
	Sequential Flow
	Parallel Flow
	Rule Task
	Human Task

	Benchmark Test Scenarios
	Benchmark Test Results
	Embedded Runtime Benchmark Results
	Medium Server Configuration Test Results
	BENCHMARK RESULTS - MEDIUM SERVER CONFIGURATION - NO PERSISTENCE
	Benchmark Results - Medium Server Configuration -
Persistence No Auditing
	Benchmark Results - Medium Server Configuration -
Persistence with Auditing
	Large Server Configuration
	Benchmark Results - Large Server Configuration - No Persistence
	Benchmark Results - Large Server Configuration -
Persistence No Auditing
	Benchmark Results - Large Server Configuration -
Persistence with Auditing
	Embedded Runtime Performance Results Analysis

	Business Central Remote REST API
	Medium Server Singleton Runtime Manager Test Results
	Average Time to Complete a Process Instance
	Medium Server Test Results
	Large Server Test Results
	Clustered Business Central Server Test Results

	Business Central Test Summary
	About Vizuri
	About the Authors

